Revamping a
legacy backend

by Umar Nizamani

©) sensehealth

Existed for over 7 years

Started with loT and pivoted over the years to build
various health care projects

2 year ago ready to build a new product
Run legacy backend for at-least 2 more years

A total team of ~25 engineers

Working In
Health Care

Health Care Data

* Working with sensitive user data

» Certified for major information security standards
(1ISO 27001 & NEN 7510)

 Data has to be kept within the Netherlands

NICE DAY

* Realtime chat & calling for mental health treatment

e Used by mental health professionals as their core
tool for treating clients

» Ditferent product on web + mobile

Maintaining the
legacy

I'he legacy backend

Several micro-services that rely on each other
Servers setup on various different providers
All servers created manually by different engineers

Only 1 senior engineer truly understood the
architecture

lechnical Debt

Deployments were dreaded
Developers were afraid to fix core problems
Downtime usually meant calling the senior engineer

On-boarding new engineers was mainly watching
the senior engineer solve problems

Familiar?

A common startup propblem

* As startups pivot and scale the backend suffers
* Jechnical debt also applies to servers

 Time to do it manually maybe < time to automate it

But how do we fix it?

Ihe ideal picture

* The entire environment has to be reproducible

* Developers should not spend time on tasks that are
easy to automate

* Everything and everyone should be redundant

Lets make 1t happen

Step 1
Containers

Containerise the stack

 Packaged all services in containers
* A simple bash file to initiate each service

» docker-compose for the whole backend

Containerise the stack

Microservice #1

while (wait for required services)
sleep;

initialise microservice #1

docKer-compose

Simplifies developer on boarding
Easy to see all dependencies for each service

Reproducible backend

Encourages all developers to contribute

$> docker—compose up

Whats the big win®

* Major boost for development workflow
e Simplifies setting up a local dev environment

* Run the entire backend locally to test end to end

Step 2
Infrastructure as Code - 1

Terratorm to create servers

Created new servers using Terraform
Frees us from vendor lock-in
Server, firewall and network contig all in Git

Pull Requests to approve new servers

Terratorm config

resource "openstack_compute_instance_v2" "mariadb_staging_1"

name "mariadb-staging-1"

image_1id "3bf30bab-8afte-241b—-a3bf-d2f98aae7237"

flavor_name "Standard 2"

key_pair "'server_key"

security_groups ["default",
“${openstack_compute_secgroup_v2.mariadb_exporter.name}”
po]

availability_zone = "NL1"

network
name = "staging"

Explaining the config

Specitying an OpenStack compute instance

Explaining the config

flavor_name = "Standard 2"

flavor_name is the server spec name given by the
Orovider (e.g Standard 2 = 2 Cores, 2 GB RAM, 32 GB HDD)

Explaining the config

security_groups = ["default",
“${openstack_compute_secgroup_v2.mariadb_exporter.name}”

b

security_groups specity the tirewall rules for this
server

Explaining the config

avalilability_zone = "NL1"

availability_zone the data center to setup this
server in

Controlling usage

e Store the current state of the servers in S3

* Clear guideline for using terraform

$> terraform plan

> |
$> terraform apply

Whats the big win®

e Free from provider lock-in
* All firewall rules clearly documented

e \ery easy to setup clusters

Step 3
Infrastructure as Code - 2

Ansible to provision servers

e All server software installed using Ansible

* Using roles to make sure all servers have same
core setup

* Extremely easy to setup clusters

Ansible config

— hosts: mariadb
become: true
vars_files:
- "encrypted/{{ env }}/mariadb"
vars:
mysgl_secure_files: "encrypted/{{ env }}/key.enc"
roles:
— mrlesmithjr.mariadb—galera—-cluster
— mariadb-secure
— role: internal-backup-role
tags:
— backup
— prometheus—mysqgld—exporter

Explaining the config

hosts specify the group of servers this config
should be applied to

Explaining the config

{{ env }} parameter filled with staging/production
depending on what server group is targeted

Explaining the config

encrypted

encrypted folder with all files encrypted using
ansible-vault, password shared via other mediums

Explaining the config

mrlesmithjr.mariadb-galera-cluster
mariadb-secure

Open Source roles found on GitHub that setup a
MariaDB Galera cluster

Explaining the config

internal-backup-role

internal-backup-role an in-house role used to
backup all supported databases in a unitied way

Whats the big win®

Clusters made effortless

Fully reproducible servers managed in Git

Ensure same configuration between Staging/Prod
Easy to incrementally improve entire infrastructure

ansible-vault to manage your secrets

Step 4
Orchestrating containers

Rancher

A Ul tor setting up container orchestration
Packed with tools to ease deployment
Allows non infrastructure team to setup containers

Now based on Kubernetes

Rancher Environments

Rancher
Server

Prod Prod Prod Stage Stage
Agent 1 Agent 2 Agent 3 Agent 2 Agent 3

Production Staging

Creating a service

Add Service

Scale
© Run 1 container CE—

Always run one instance of this container on every host

Name Description
Grafana
Select Image* Always pull image before creating

grafana/grafana:latest
@ Port Map

@ Service Links

Health Checks

Command Volumes Networking Security/Host Secrets Health Check = Labels Scheduling

Type None TCP Connection Opens @ HTTP Responds 2xx/3xx
Port* 3000
HTTP Request* /login
Initializing Timeout 60000 ms Reinitializing Timeout 60000 ms
Check Interval 2000 ms Check Timeout 2000 ms
Healthy After 2 successes Unhealthy After 3 failures
When Unhealthy Take no action

O Re-create

Re-create, only when at least 1 container is healthy

| oad Balancer

Name Description

Load Balancer

Port Rules @Add Service Rule @Add Selector Rule
Access* Protocol* Request Host Port* Path Target* Port*
Public = HTTPS & grafana.mywebsite.com 443 Grafana/grafana v 3000 =

Show
custom backend names. Show host |P address options.

Built-in HAProxy load balancer that can connect to services

Web hooks

INFRASTRUCTURE v ADMIN v APl v
Keys
Webhooks
Name*
Upgrade Staging Service
Kind

Upgrade a Service

Webhook Payload Format

Docker Hub

Image Tag*

staging

Service Selector*

@Add Selector Label
Key

name

Value

my-service

4»

<>

Whats the big win®

Easy to manage clusters for your services
Built in load balancer and health checks

Ul with access control to allow developers to
deploy test services

Ready for continuous deployment

Step 5
Continuous Deployment

Travis + Docker Hub

Each commit runs tests and reports code quality
Commits to develop push new image to docker hub
Dockerhub fires web hook to update Rancher container
Health checks + rollbacks for bad commits

docker-compose allows running entire backend in
Travis to run integration tests

Use Travis to notify the team about releases

Travis + Docker Hub

Upgrade to
Push to Build in Push to Webhook to new version

M Develop Travis @ Docker Hub Rancher i

Whats the big win®

Developers don’t need to touch infrastructure
QA notified for release otherwise one click rollback
Bots check code quality

Each release tagged and stored in docker hub for
easy rollback to any version

Step 6
Gearing up for Production

ENd to end health checks

* Created status endpoints that queries all services it
depends on

» Container health checks for avoiding failures

* Return response times for each internal query

{"service-1": "0.016ms", "service-2": "0.01ms", "mysql': “0.006ms"” ..}

Configuration Management

e Services relied on configuration files and lot of work
to move to any other format

e Stored all configuration files encrypted in Ansible

 Bash script to hot reload service on config change

inotifywait -m —-e modify /etc/service/service.conf | while read events;

do supervisorctl restart service; done

Incident Management

Prometheus to monitor the status of all services
Alert Manager to configure severity of incidents
Incidents and alerts reported to Ops Genie
On Call schedule in Ops Genie for the team

Severity based alert (Push Notification, SMS, Call)

External Health Checks

Uptime Robot to ping externally visible servers
Health checks pertormed from multiple locations
A status page to share status with non-tech team

Monitor provider performance and uptime

The results

IlI Uptime (99.99(%)) Jan 1st 19 - Apr 28th 19 ~

/, Response Time

Shows the "instant" that the monitor started returning a response in ms (and average for the
displayed period is 613.07ms).

Il Milliseconds

AN MM AN A

01 Feb 15 Feb 01 Mar

Total 16 minutes of downtime in 2019

8 minutes because of our provider

Vlaintenance

e All servers are now clustered so almost never a
critical failure

e Averse to hardware failure, provisioning new
identical server takes ~ 20 minutes

e All tooling that runs on docker now supports 1 click
upgrades (e.g Sentry, Kibana, Metabase, ...)

A stronger company

 We allow backend engineers to learn infrastructure
management by being on call

e Setup several new tools for improving internal
development workflow

e Operations team is working on prevention not cure

Thank You

