
Revamping a

legacy backend

by Umar Nizamani

• Existed for over 7 years

• Started with IoT and pivoted over the years to build
various health care projects

• 2 year ago ready to build a new product

• Run legacy backend for at-least 2 more years

• A total team of ~25 engineers

Working in

Health Care

Health Care Data

• Working with sensitive user data

• Certified for major information security standards
(ISO 27001 & NEN 7510)

• Data has to be kept within the Netherlands

• Realtime chat & calling for mental health treatment

• Used by mental health professionals as their core
tool for treating clients

• Different product on web + mobile

Maintaining the
legacy

The legacy backend

• Several micro-services that rely on each other

• Servers setup on various different providers

• All servers created manually by different engineers

• Only 1 senior engineer truly understood the
architecture

Technical Debt

• Deployments were dreaded

• Developers were afraid to fix core problems

• Downtime usually meant calling the senior engineer

• On-boarding new engineers was mainly watching
the senior engineer solve problems

Familiar?

A common startup problem

• As startups pivot and scale the backend suffers

• Technical debt also applies to servers

• Time to do it manually maybe < time to automate it

But how do we fix it?

The ideal picture

• The entire environment has to be reproducible

• Developers should not spend time on tasks that are
easy to automate

• Everything and everyone should be redundant

Lets make it happen

Step 1

Containers

Containerise the stack

• Packaged all services in containers

• A simple bash file to initiate each service

• docker-compose for the whole backend

Containerise the stack

Microservice #1

while (wait for required services)

 sleep;

initialise microservice #1

• Simplifies developer on boarding

• Easy to see all dependencies for each service

• Reproducible backend

• Encourages all developers to contribute

docker-compose

$> docker-compose up

Whats the big win?

• Major boost for development workflow

• Simplifies setting up a local dev environment

• Run the entire backend locally to test end to end

Step 2

Infrastructure as Code - 1

Terraform to create servers

• Created new servers using Terraform

• Frees us from vendor lock-in

• Server, firewall and network config all in Git

• Pull Requests to approve new servers

Terraform config
resource "openstack_compute_instance_v2" "mariadb_staging_1" {

 name = "mariadb-staging-1"

 image_id = "3bf30bab-8afe-241b-a3bf-d2f98aae7237"

 flavor_name = "Standard 2"

 key_pair = "server_key"

 security_groups = ["default",

 “${openstack_compute_secgroup_v2.mariadb_exporter.name}”

 ,…]

 availability_zone = "NL1"

 network {

 name = "staging"

 }

}

Explaining the config

Specifying an OpenStack compute instance

resource "openstack_compute_instance_v2" "mariadb_staging_1" {

 name = "mariadb-staging-1"

 image_id = "3bf30bab-8afe-241b-a3bf-d2f98aae7237"

 flavor_name = "Standard 2"

 key_pair = "server_key"

 security_groups = ["default",

 “${openstack_compute_secgroup_v2.mariadb_exporter.name}”

 ,…]

 availability_zone = "NL1"

 network {

 name = "staging"

 }

}

resource "openstack_compute_instance_v2"

Explaining the config

flavor_name is the server spec name given by the
provider (e.g Standard 2 = 2 Cores, 2 GB RAM, 32 GB HDD)

resource "openstack_compute_instance_v2" "mariadb_staging_1" {

 name = "mariadb-staging-1"

 image_id = "3bf30bab-8afe-241b-a3bf-d2f98aae7237"

 flavor_name = "Standard 2"

 key_pair = "server_key"

 security_groups = ["default",

 “${openstack_compute_secgroup_v2.mariadb_exporter.name}”

 ,…]

 availability_zone = "NL1"

 network {

 name = "staging"

 }

}

flavor_name = "Standard 2"

Explaining the config

security_groups specify the firewall rules for this
server

resource "openstack_compute_instance_v2" "mariadb_staging_1" {

 name = "mariadb-staging-1"

 image_id = "3bf30bab-8afe-241b-a3bf-d2f98aae7237"

 flavor_name = "Standard 2"

 key_pair = "server_key"

 security_groups = ["default",

 “${openstack_compute_secgroup_v2.mariadb_exporter.name}”

 ,…]

 availability_zone = "NL1"

 network {

 name = "staging"

 }

}

 security_groups = ["default",

 “${openstack_compute_secgroup_v2.mariadb_exporter.name}”

 ,…]

Explaining the config

availability_zone the data center to setup this
server in

resource "openstack_compute_instance_v2" "mariadb_staging_1" {

 name = "mariadb-staging-1"

 image_id = "3bf30bab-8afe-241b-a3bf-d2f98aae7237"

 flavor_name = "Standard 2"

 key_pair = "server_key"

 security_groups = ["default",

 “${openstack_compute_secgroup_v2.mariadb_exporter.name}”

 ,…]

 availability_zone = "NL1"

 network {

 name = "staging"

 }

}

availability_zone = "NL1"

Controlling usage

• Store the current state of the servers in S3

• Clear guideline for using terraform

$> terraform plan

$> … 👀

$> terraform apply

Whats the big win?

• Free from provider lock-in

• All firewall rules clearly documented

• Very easy to setup clusters

Step 3

Infrastructure as Code - 2

Ansible to provision servers

• All server software installed using Ansible

• Using roles to make sure all servers have same
core setup

• Extremely easy to setup clusters

Ansible config
- hosts: mariadb

 become: true

 vars_files:

 - "encrypted/{{ env }}/mariadb"

 vars:

 mysql_secure_files: "encrypted/{{ env }}/key.enc"

 roles:

 - mrlesmithjr.mariadb-galera-cluster

 - mariadb-secure

 - role: internal-backup-role

 tags:

 - backup

 - prometheus-mysqld-exporter

Explaining the config
- hosts: mariadb

 become: true

 vars_files:

 - "encrypted/{{ env }}/mariadb"

 vars:

 mysql_secure_files: "encrypted/{{ env }}/key.enc"

 roles:

 - mrlesmithjr.mariadb-galera-cluster

 - mariadb-secure

 - role: internal-backup-role

 tags:

 - backup

 - prometheus-mysqld-exporter

hosts: mariadb

hosts specify the group of servers this config
should be applied to

Explaining the config
- hosts: mariadb

 become: true

 vars_files:

 - "encrypted/{{ env }}/mariadb"

 vars:

 mysql_secure_files: "encrypted/{{ env }}/key.enc"

 roles:

 - mrlesmithjr.mariadb-galera-cluster

 - mariadb-secure

 - role: internal-backup-role

 tags:

 - backup

 - prometheus-mysqld-exporter

{{ env }}

{{ env }} parameter filled with staging/production
depending on what server group is targeted

Explaining the config
- hosts: mariadb

 become: true

 vars_files:

 - "encrypted/{{ env }}/mariadb"

 vars:

 mysql_secure_files: "encrypted/{{ env }}/key.enc"

 roles:

 - mrlesmithjr.mariadb-galera-cluster

 - mariadb-secure

 - role: internal-backup-role

 tags:

 - backup

 - prometheus-mysqld-exporter

encrypted

encrypted folder with all files encrypted using
ansible-vault, password shared via other mediums

Explaining the config
- hosts: mariadb

 become: true

 vars_files:

 - "encrypted/{{ env }}/mariadb"

 vars:

 mysql_secure_files: "encrypted/{{ env }}/key.enc"

 roles:

 - mrlesmithjr.mariadb-galera-cluster

 - mariadb-secure

 - role: internal-backup-role

 tags:

 - backup

 - prometheus-mysqld-exporter

Open Source roles found on GitHub that setup a
MariaDB Galera cluster

mrlesmithjr.mariadb-galera-cluster

mariadb-secure

Explaining the config
- hosts: mariadb

 become: true

 vars_files:

 - "encrypted/{{ env }}/mariadb"

 vars:

 mysql_secure_files: "encrypted/{{ env }}/key.enc"

 roles:

 - mrlesmithjr.mariadb-galera-cluster

 - mariadb-secure

 - role: internal-backup-role

 tags:

 - backup

 - prometheus-mysqld-exporter

internal-backup-role

internal-backup-role an in-house role used to
backup all supported databases in a unified way

Whats the big win?

• Clusters made effortless

• Fully reproducible servers managed in Git

• Ensure same configuration between Staging/Prod

• Easy to incrementally improve entire infrastructure

• ansible-vault to manage your secrets

Step 4

Orchestrating containers

Rancher

• A UI for setting up container orchestration

• Packed with tools to ease deployment

• Allows non infrastructure team to setup containers

• Now based on Kubernetes

StagingProduction

Rancher Environments
Rancher
Server

Prod

Agent 1

Prod

Agent 2

Prod

Agent 3

Stage

Agent 1

Stage

Agent 2

Stage

Agent 3

Creating a service

Health Checks

Load Balancer

Built-in HAProxy load balancer that can connect to services

Web hooks

Whats the big win?

• Easy to manage clusters for your services

• Built in load balancer and health checks

• UI with access control to allow developers to
deploy test services

• Ready for continuous deployment

Step 5

Continuous Deployment

Travis + Docker Hub
• Each commit runs tests and reports code quality

• Commits to develop push new image to docker hub

• Dockerhub fires web hook to update Rancher container

• Health checks + rollbacks for bad commits

• docker-compose allows running entire backend in
Travis to run integration tests

• Use Travis to notify the team about releases

Travis + Docker Hub

Whats the big win?

• Developers don’t need to touch infrastructure

• QA notified for release otherwise one click rollback

• Bots check code quality

• Each release tagged and stored in docker hub for
easy rollback to any version

Step 6

Gearing up for Production

End to end health checks
• Created status endpoints that queries all services it

depends on

• Container health checks for avoiding failures

• Return response times for each internal query

{"service-1": "0.016ms", "service-2": "0.01ms", "mysql": “0.006ms” …}

Configuration Management

• Services relied on configuration files and lot of work
to move to any other format

• Stored all configuration files encrypted in Ansible

• Bash script to hot reload service on config change

inotifywait -m -e modify /etc/service/service.conf | while read events;
do supervisorctl restart service; done

Incident Management
• Prometheus to monitor the status of all services

• Alert Manager to configure severity of incidents

• Incidents and alerts reported to Ops Genie

• On Call schedule in Ops Genie for the team

• Severity based alert (Push Notification, SMS, Call)

External Health Checks
• Uptime Robot to ping externally visible servers

• Health checks performed from multiple locations

• A status page to share status with non-tech team

• Monitor provider performance and uptime

The results

Total 16 minutes of downtime in 2019

8 minutes because of our provider

Maintenance
• All servers are now clustered so almost never a

critical failure

• Averse to hardware failure, provisioning new
identical server takes ~ 20 minutes

• All tooling that runs on docker now supports 1 click
upgrades (e.g Sentry, Kibana, Metabase, …)

A stronger company
• We allow backend engineers to learn infrastructure

management by being on call

• Setup several new tools for improving internal
development workflow

• Operations team is working on prevention not cure

Thank You

