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Problems



Technical Debt
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Ownership



How does this work?



Startup
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Where do I start?



Quick wins first
If you don’t have to understand the code to 

fix the problem its a quick win



• Android + iOS


• Null pointer exceptions


• Resource/Memory Leaks



Screen grabs: fbinfer.com
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• Built into Android Studio


• End to end Android code problems


• Error ranging in severity from formatting to critical 
errors

     Lint



     Lint
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Running on our 
products



NULL_DEREFERENCE: 79

CONTEXT_LEAK: 5

RESOURCE_LEAK: 4

DIRECT_ATOMIC_PROPERTY_ACCESS: 35

BAD_POINTER_COMPARISON: 4

REGISTERED_OBSERVER_BEING_DEALLOCATED: 3

MEMORY_LEAK: 2

STRONG_DELEGATE_WARNING: 2

NULL_DEREFERENCE: 2

PARAMETER_NOT_NULL_CHECKED: 1

Android iOS

        

Found 88 issues Found 49 issues
22 errors in our code



• ~ 5000 warnings


• ~50 potential crashes


• ~ 80 resource warnings avoiding potential 
layouting problems


• ~ 20 translation problems

     Lint (Android Only)



Time spent: 3 days
Potentially fatal bugs fixed: > 100


Lay-outing issues fixed: > 150

Across 4 projects (2 products x 2 platforms)



Reducing technical 
debt in 2 weeks



Well, 

thats one way to do it



Maximum gains with minimum effort

• Stable tests that the dev team relies on


• Remove points of failure


• Test like the end user will test


• Test core user interactions first



No mocking frameworks
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Activity Test Rule

@Rule

public ActivityTestRule<BaseActivity> activityRule = 


new ActivityTestRule<>(

BaseActivity.class,

true,

false);



Activity Test Rule

@Rule

public SenseLoggedOutActivityTestRule <BaseActivity> activityRule = 


new SenseLoggedOutActivityTestRule <>(

BaseActivity.class,

true,

false);



Tests without Espresso

// Click Submit

ClickViewWithId(R.id.sign_in_button);


// Wait for API response

Thread.sleep(15000);


// Validate…



Tests without Espresso

// Wait for API response

Thread.sleep(15000) ;(



Espresso
@Test
public void greeterSaysHello() {

  onView(withId(R.id.name_field))
    .perform(typeText(“Steve"));

  onView(withId(R.id.greet_button))
    .perform(click());

  onView(withText("Hello Steve!"))
    .check(matches(isDisplayed()));

}



Espresso

// Fill email with null email

onView(withId(R.id.email))

        .perform(clearText(), closeSoftKeyboard());


// Fill password with valid password

onView(withId(R.id.password))

        .perform(clearText(), typeText(“1Password”));


// Click Submit

onView(withId(R.id.sign_in_button))

        .perform(click());


// Check if the error is correct

onView(withId(R.id.email)).check(matches(TestHelpers.

    hasErrorText(R.string.error_field_required)));




Espresso

• No Thread.sleep


• Espresso can “wait” for async task


• View assertion for everything


• Custom matchers for custom views



Awesome!

✓ Native Activity Tests (ActivityTestRule)


✓ Expressive view assertion (Espresso)



But…



More technical debt

• App initialises everything from a single activity


• No support for deep links


• This means can’t jump into activity to test


• Lots of click to get to the screen we want to test 



Robot Pattern



// Get to main screen with a new user account 

gotoHomeScreenWithValidNewUser();


assertMainScreenIsShowing();


// Activate movement goal

ConfigureGoalRobot.activateMoveGoal(activityRule, false);



gotoHomeScreenWithValidNewUser();

LoginRobot.gotoRegisterScreen(activityRule);


LoginRobot.registerUniqueNewUser(activityRule);


OnboardingRobot.skipOnboardingScreens(activityRule);



LoginRobot.gotoRegisterScreen()

// Force logout as we need to register with a specific user

if (!TestHelpers.doesViewExist(R.id.toRegistration)) {

    LoginRobot.logout(activityRule);

}


if (TestHelpers.doesViewExist(R.id.toRegistration)) {

    onView(withId(R.id.toRegistration)).

        perform(click());

}




Robot Pattern

• Clean and intuitive style


• Once created reusable for all tests 


• Allows QA team to write extensive test cases


• Steps to reproduce bugs 1-1 with the test code



Sounds great!

✓ Native Activity Tests (ActivityTestRule)


✓ Expressive view assertion (Espresso)


✓ Natural language testing (Robot Pattern)



But…



Testing Problems

• Still ignoring UI and lay-outing issues


• Need to deploy to real device for testing


• Painful to deploy to multiple devices



Lets Spoon.



Spoon

• Run on multiple devices with a single command


• Capture screenshots for each screen


• Make animated GIFs


• Analytics for tests



./gradlew spoon --debug  --stacktrace.









average of 4 seconds

Free performance metrics!





Testing Complete!

✓ Native Activity Tests (ActivityTestRule)


✓ Expressive view assertion (Espresso)


✓ Natural language testing (Robot Pattern)


✓ UI testing by taking screenshots (Spoon)



Lets make this 
continuous.



Build farm

• Old Mac Pro setup with Jenkins


• Connect android devices


• Apply required settings and forget about it (for a 
little while)







Jenkins
• Nightly build and run on all devices


• Upload HTML reports for POs to view


• First test = take a screenshot. Runs nightly.


• POs and designers can see the development


• Ensure things are built correctly from the start



Build Steps
• Run a job on all branches with a new commit last 

night


• Remove all Sense Health apps from all phones


• Run test with Spoon


• Upload HTML report for each respective branch


• Post a link on Slack



Final Setup
✓ Native Activity Tests (ActivityTestRule)


✓ Expressive view assertion (Espresso)


✓ Natural language testing (Robot Pattern)


✓ UI testing by taking screenshots (Spoon)


✓ Continuous Testing (Jenkins)



Lessons Learnt

• Never rely on waitForSeconds in testing


• FalconSpoon to take screenshots


• Don’t run more than 2 devices



Lessons Learnt
• UI tests should work like end users


• Automated UI positioning tests can be tricky


• Take screenshots and let the POs be the judge 


• Make writing tests closer to natural language


• QA has added > 300 tests



Lets make our apps 
safe again

Thank You!


