
Continuous Testing
with Android

by Umar Nizamani

About me
Mobile Games

About me
Experiential Marketing

Code Europe, 2017

About me

Tech Lead

Applications to monitor and coach you to
optimise your quality of life

Problems

Technical Debt

Image courtesy Alan O’Rourke: audiencestack.com

http://audiencestack.com
http://audiencestack.com

Ownership

How does this work?

Startup

Image courtesy: pintrest.com

http://pintrest.com
http://pintrest.com

Where do I start?

Quick wins first
If you don’t have to understand the code to

fix the problem its a quick win

• Android + iOS

• Null pointer exceptions

• Resource/Memory Leaks

Screen grabs: fbinfer.com

http://fbinfer.com
http://fbinfer.com

• Built into Android Studio

• End to end Android code problems

• Error ranging in severity from formatting to critical
errors

 Lint

 Lint

Image courtesy: zeroturnaround.com

http://zeroturnaround.com
http://zeroturnaround.com

Running on our
products

NULL_DEREFERENCE: 79

CONTEXT_LEAK: 5

RESOURCE_LEAK: 4

DIRECT_ATOMIC_PROPERTY_ACCESS: 35

BAD_POINTER_COMPARISON: 4

REGISTERED_OBSERVER_BEING_DEALLOCATED: 3

MEMORY_LEAK: 2

STRONG_DELEGATE_WARNING: 2

NULL_DEREFERENCE: 2

PARAMETER_NOT_NULL_CHECKED: 1

Android iOS

Found 88 issues Found 49 issues
22 errors in our code

• ~ 5000 warnings

• ~50 potential crashes

• ~ 80 resource warnings avoiding potential
layouting problems

• ~ 20 translation problems

 Lint (Android Only)

Time spent: 3 days
Potentially fatal bugs fixed: > 100

Lay-outing issues fixed: > 150

Across 4 projects (2 products x 2 platforms)

Reducing technical
debt in 2 weeks

Well,

thats one way to do it

Maximum gains with minimum effort

• Stable tests that the dev team relies on

• Remove points of failure

• Test like the end user will test

• Test core user interactions first

No mocking frameworks

Image courtesy: imgur.com

http://imgur.com
http://imgur.com

Activity Test Rule

@Rule

public ActivityTestRule<BaseActivity> activityRule =

new ActivityTestRule<>(

BaseActivity.class,

true,

false);

Activity Test Rule

@Rule

public SenseLoggedOutActivityTestRule <BaseActivity> activityRule =

new SenseLoggedOutActivityTestRule <>(

BaseActivity.class,

true,

false);

Tests without Espresso

// Click Submit

ClickViewWithId(R.id.sign_in_button);

// Wait for API response

Thread.sleep(15000);

// Validate…

Tests without Espresso

// Wait for API response

Thread.sleep(15000) ;(

Espresso
@Test
public void greeterSaysHello() {

 onView(withId(R.id.name_field))
 .perform(typeText(“Steve"));

 onView(withId(R.id.greet_button))
 .perform(click());

 onView(withText("Hello Steve!"))
 .check(matches(isDisplayed()));

}

Espresso

// Fill email with null email

onView(withId(R.id.email))

 .perform(clearText(), closeSoftKeyboard());

// Fill password with valid password

onView(withId(R.id.password))

 .perform(clearText(), typeText(“1Password”));

// Click Submit

onView(withId(R.id.sign_in_button))

 .perform(click());

// Check if the error is correct

onView(withId(R.id.email)).check(matches(TestHelpers.

 hasErrorText(R.string.error_field_required)));

Espresso

• No Thread.sleep

• Espresso can “wait” for async task

• View assertion for everything

• Custom matchers for custom views

Awesome!

✓ Native Activity Tests (ActivityTestRule)

✓ Expressive view assertion (Espresso)

But…

More technical debt

• App initialises everything from a single activity

• No support for deep links

• This means can’t jump into activity to test

• Lots of click to get to the screen we want to test

Robot Pattern

// Get to main screen with a new user account

gotoHomeScreenWithValidNewUser();

assertMainScreenIsShowing();

// Activate movement goal

ConfigureGoalRobot.activateMoveGoal(activityRule, false);

gotoHomeScreenWithValidNewUser();

LoginRobot.gotoRegisterScreen(activityRule);

LoginRobot.registerUniqueNewUser(activityRule);

OnboardingRobot.skipOnboardingScreens(activityRule);

LoginRobot.gotoRegisterScreen()

// Force logout as we need to register with a specific user

if (!TestHelpers.doesViewExist(R.id.toRegistration)) {

 LoginRobot.logout(activityRule);

}

if (TestHelpers.doesViewExist(R.id.toRegistration)) {

 onView(withId(R.id.toRegistration)).

 perform(click());

}

Robot Pattern

• Clean and intuitive style

• Once created reusable for all tests

• Allows QA team to write extensive test cases

• Steps to reproduce bugs 1-1 with the test code

Sounds great!

✓ Native Activity Tests (ActivityTestRule)

✓ Expressive view assertion (Espresso)

✓ Natural language testing (Robot Pattern)

But…

Testing Problems

• Still ignoring UI and lay-outing issues

• Need to deploy to real device for testing

• Painful to deploy to multiple devices

Lets Spoon.

Spoon

• Run on multiple devices with a single command

• Capture screenshots for each screen

• Make animated GIFs

• Analytics for tests

./gradlew spoon --debug --stacktrace.

average of 4 seconds

Free performance metrics!

Testing Complete!

✓ Native Activity Tests (ActivityTestRule)

✓ Expressive view assertion (Espresso)

✓ Natural language testing (Robot Pattern)

✓ UI testing by taking screenshots (Spoon)

Lets make this
continuous.

Build farm

• Old Mac Pro setup with Jenkins

• Connect android devices

• Apply required settings and forget about it (for a
little while)

Jenkins
• Nightly build and run on all devices

• Upload HTML reports for POs to view

• First test = take a screenshot. Runs nightly.

• POs and designers can see the development

• Ensure things are built correctly from the start

Build Steps
• Run a job on all branches with a new commit last

night

• Remove all Sense Health apps from all phones

• Run test with Spoon

• Upload HTML report for each respective branch

• Post a link on Slack

Final Setup
✓ Native Activity Tests (ActivityTestRule)

✓ Expressive view assertion (Espresso)

✓ Natural language testing (Robot Pattern)

✓ UI testing by taking screenshots (Spoon)

✓ Continuous Testing (Jenkins)

Lessons Learnt

• Never rely on waitForSeconds in testing

• FalconSpoon to take screenshots

• Don’t run more than 2 devices

Lessons Learnt
• UI tests should work like end users

• Automated UI positioning tests can be tricky

• Take screenshots and let the POs be the judge

• Make writing tests closer to natural language

• QA has added > 300 tests

Lets make our apps
safe again

Thank You!

